4. Quantum Phase Estimation

Isaac H. Kim (UC Davis)

Quantum Phase Estimation

UIN>= exen In>

- Quantum Phase Estimation (QPE) is one of the most widely used subroutines in quantum algorithms.
- Setup: We have a unitary \underbrace{U}_{\sim} and its eigenstate $|n\rangle$, with an eigenvalue $e^{i\theta_n}$.
- QPE is an algorithm to measure θ_n .
- QPE serves two purposes in Quantum Simulation.
 - Estimating ground state energy.
 - Ground state preparation

How QPE works

- There are two ingredients.
 - 1. Phase kick-back
 - 2. Quantum Fourier Transform

Phase kickback

• Simplest case: Suppose we have an ability to compute a function $f(x) \in \{0,1\}$. We wish to implement a unitary transformation:

$$|x\rangle \rightarrow (-1)^{f(x)}|x\rangle.$$

• How would we do this?

$$\sum_{x} dx |x\rangle \xrightarrow{(i)+(i)} \longrightarrow \sum_{x} dx (-1)^{t(x)} |x\rangle$$

Phase kickback

 More general case: Suppose we have an ability to implement a unitary U. We wish to implement

Phase kickback, in superposition

• Instead of beginning with $|x\rangle$, suppose we begin in the $\sum_{n=1}^{2^n-1} \frac{1}{2^{n/2}} |x\rangle$.

After applying the phase kickback operation, we get a "momentum eigenstate."

Quantum Fourier Transform

• Quantum Fourier Transform can be performed using $O(n^2)$ one- and two-qubit gates.

Quantum Phase Estimation in a Nutshell

- In the infinite-precision limit, QPE performs a non-destructive measurement in the eigenbasis of U. Inverse
- Procedure: Phase kickback in uniform superposition -> QFT.
- Often the cost of QFT is subleading compared to the implementation of U.
- Often the cost is 2^n times the cost. Precision $\approx 1/2^n$. $\downarrow_{n} \geq e^{\lambda 0x} \mid_{x} \sim \underbrace{\sqrt{2^n}}_{k=0} \downarrow_{x=0}^{2^n-1} \underbrace{\sqrt{2^n}}_{k=0} \downarrow_{x=0}^{2^n-1} \underbrace{\sqrt{2^n}}_{k=0} \mid_{x} e^{-\frac{2\pi k}{2^n}} \mid_{k} = \underbrace{1}_{2^n} \underbrace{2^{n-1}}_{k=0} \underbrace{2^{n-1}}_{x=0} \underbrace{\sqrt{2^n}}_{k=0} \mid_{k} e^{-\frac{2\pi k}{2^n}} \mid_{k} e^{-\frac{2\pi k}{2^n}} \mid_{k} e^{-\frac{2\pi k}{2^n}} \mid_{k} e^{-\frac{2\pi k}{2^n}} e^{-\frac{2\pi k}{2^n}} \mid_{k} e^{-\frac{2\pi k}{2^n}} e^{-\frac$

Controlled-U

• The cost of implementing controlled-U is comparable to the cost of implementing U.

Applications

$|n\rangle$

- We already established that e^{-iHt} can be implemented efficiently.
- Thus, controlled- e^{-iHt} can be also implemented efficiently.
- Therefore, we can compute the energy of H in time $O(1/\epsilon)$, where ϵ is the precision.
 - This is better than the naive approach of $O(1/\epsilon^2)$.
 - This can lead to a huge difference in quantum chemistry applications.
 - . And, there are added benefits. (Next slide)

Eigenstate assumption

- We assumed that we have access to an eigenstate.
- But didn't we already say that preparing an eigenstate (e.g., ground state) is hard in general?
- More realistically, the initial state will be generally of the following form: $|\psi\rangle = \sqrt{1 - p_n} |n\rangle + \sqrt{p_n} |n_\perp\rangle.$

 $|\psi\rangle = d |0\rangle + \beta |1\rangle + \partial |2\rangle \qquad e^{a \circ e e e \circ e^{a \circ e^{a \circ e^{a \circ e^{a \circ e^{a$ $e^{\lambda\theta_{0}}e^{\lambda\theta_{1}}e^{\lambda\theta_{1}}$

Suppose we begin with the following state: U=e

$$|\psi\rangle = \sum \alpha_n |n\rangle.$$

- If we apply QPE (in the infinite precision limit), we will measure $|n\rangle$ with probability $|\alpha_n|^{\perp}$.
- Repeating this many times, you can get a histogram of eigenstates, each labeled by different phases. E, E, E, E, E
- To prepare an eigenstate corresponding to the phase $e^{i\theta_n}$, repeat QPE until you measure θ_n . If you succeed, halt.

But we rarely even know $\theta_n \dots$

- Sometimes we do, e.g., models for which we know the ground state is exactly zero. In that case, we simply repeat measuring θ_n until we get $\theta_n = 0$.
- More generally, we don't know the exact ground state energy. In that case, we simply repeat the measurement many times and pick the smallest θ_n . This will be our "guess" for the ground state energy.
- If the overlap with the true ground state is α , the probability we fail to get the correct ground state energy after *m* repetition is $(1 |\alpha|^2)^m$.

$$d = t_{s}$$

Application: Ground state preparation

- 1. Repeat QPE many times to get a good guess on the ground state energy.
- 2. Repeat QPE many times until you measure your guess of the ground state energy.
- 3. Done.

 Obviously, this works well only if we can create some state with nonzero overlap with the ground state.

Summary

$$V(N_{1} N) = 0$$

$$\int_{P_{r} \lfloor X_{1} = +1 \rfloor = \frac{1}{2}}^{P_{r} \lfloor X_{1} = +1 \rfloor = \frac{1}{2}} N_{t} = N$$

$$\int_{R_{t} = -NL} S = N_{t} + N_{t} = N$$

$$\int_{R_{t} = -NL} S = N_{t} = N$$

$$\int_{R_{t} = -NL} S = N_{t} = N$$

- QPE is very useful for
 - energy estimation.
 - ground state preparation
- QPE cost $\approx 1/\epsilon$ times Hamiltonian simulation cost for a unit time.

$$H = \sum_{i=1}^{N} d_i P_i$$

$$H' = \frac{\sum_{\lambda=1}^{N} d_{\lambda} P_{\lambda} + \sum_{\lambda=1}^{N} |d_{\lambda}| I}{\sum_{\lambda=1}^{N} |d_{\lambda}|}$$